Metamath Proof Explorer


Theorem cats2cat

Description: Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021)

Ref Expression
Hypotheses cats2cat.b BWordV
cats2cat.d DWordV
cats2cat.a A=B++⟨“X”⟩
cats2cat.c C=⟨“Y”⟩++D
Assertion cats2cat A++C=B++⟨“XY”⟩++D

Proof

Step Hyp Ref Expression
1 cats2cat.b BWordV
2 cats2cat.d DWordV
3 cats2cat.a A=B++⟨“X”⟩
4 cats2cat.c C=⟨“Y”⟩++D
5 3 4 oveq12i A++C=B++⟨“X”⟩++⟨“Y”⟩++D
6 s1cli ⟨“X”⟩WordV
7 ccatcl BWordV⟨“X”⟩WordVB++⟨“X”⟩WordV
8 1 6 7 mp2an B++⟨“X”⟩WordV
9 s1cli ⟨“Y”⟩WordV
10 ccatass B++⟨“X”⟩WordV⟨“Y”⟩WordVDWordVB++⟨“X”⟩++⟨“Y”⟩++D=B++⟨“X”⟩++⟨“Y”⟩++D
11 8 9 2 10 mp3an B++⟨“X”⟩++⟨“Y”⟩++D=B++⟨“X”⟩++⟨“Y”⟩++D
12 ccatass BWordV⟨“X”⟩WordV⟨“Y”⟩WordVB++⟨“X”⟩++⟨“Y”⟩=B++⟨“X”⟩++⟨“Y”⟩
13 1 6 9 12 mp3an B++⟨“X”⟩++⟨“Y”⟩=B++⟨“X”⟩++⟨“Y”⟩
14 df-s2 ⟨“XY”⟩=⟨“X”⟩++⟨“Y”⟩
15 14 eqcomi ⟨“X”⟩++⟨“Y”⟩=⟨“XY”⟩
16 15 oveq2i B++⟨“X”⟩++⟨“Y”⟩=B++⟨“XY”⟩
17 13 16 eqtri B++⟨“X”⟩++⟨“Y”⟩=B++⟨“XY”⟩
18 17 oveq1i B++⟨“X”⟩++⟨“Y”⟩++D=B++⟨“XY”⟩++D
19 5 11 18 3eqtr2i A++C=B++⟨“XY”⟩++D