Metamath Proof Explorer


Theorem lsws4

Description: The last symbol of a 4 letter word is its fourth symbol. (Contributed by AV, 8-Feb-2021)

Ref Expression
Assertion lsws4 DVlastS⟨“ABCD”⟩=D

Proof

Step Hyp Ref Expression
1 s4cli ⟨“ABCD”⟩WordV
2 lsw ⟨“ABCD”⟩WordVlastS⟨“ABCD”⟩=⟨“ABCD”⟩⟨“ABCD”⟩1
3 1 2 mp1i DVlastS⟨“ABCD”⟩=⟨“ABCD”⟩⟨“ABCD”⟩1
4 s4len ⟨“ABCD”⟩=4
5 4 oveq1i ⟨“ABCD”⟩1=41
6 4m1e3 41=3
7 5 6 eqtri ⟨“ABCD”⟩1=3
8 7 fveq2i ⟨“ABCD”⟩⟨“ABCD”⟩1=⟨“ABCD”⟩3
9 8 a1i DV⟨“ABCD”⟩⟨“ABCD”⟩1=⟨“ABCD”⟩3
10 s4fv3 DV⟨“ABCD”⟩3=D
11 3 9 10 3eqtrd DVlastS⟨“ABCD”⟩=D