Metamath Proof Explorer


Theorem cats1fv

Description: A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 T=S++⟨“X”⟩
cats1cli.2 SWordV
cats1fvn.3 S=M
cats1fv.4 YVSN=Y
cats1fv.5 N0
cats1fv.6 N<M
Assertion cats1fv YVTN=Y

Proof

Step Hyp Ref Expression
1 cats1cld.1 T=S++⟨“X”⟩
2 cats1cli.2 SWordV
3 cats1fvn.3 S=M
4 cats1fv.4 YVSN=Y
5 cats1fv.5 N0
6 cats1fv.6 N<M
7 1 fveq1i TN=S++⟨“X”⟩N
8 s1cli ⟨“X”⟩WordV
9 nn0uz 0=0
10 5 9 eleqtri N0
11 lencl SWordVS0
12 nn0z S0S
13 2 11 12 mp2b S
14 6 3 breqtrri N<S
15 elfzo2 N0..^SN0SN<S
16 10 13 14 15 mpbir3an N0..^S
17 ccatval1 SWordV⟨“X”⟩WordVN0..^SS++⟨“X”⟩N=SN
18 2 8 16 17 mp3an S++⟨“X”⟩N=SN
19 7 18 eqtri TN=SN
20 19 4 eqtrid YVTN=Y