Metamath Proof Explorer


Theorem ccatval1

Description: Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 22-Sep-2015) (Proof shortened by AV, 30-Apr-2020) (Revised by JJ, 18-Jan-2024)

Ref Expression
Assertion ccatval1 SWordATWordBI0..^SS++TI=SI

Proof

Step Hyp Ref Expression
1 ccatfval SWordATWordBS++T=x0..^S+Tifx0..^SSxTxS
2 1 3adant3 SWordATWordBI0..^SS++T=x0..^S+Tifx0..^SSxTxS
3 eleq1 x=Ix0..^SI0..^S
4 fveq2 x=ISx=SI
5 fvoveq1 x=ITxS=TIS
6 3 4 5 ifbieq12d x=Iifx0..^SSxTxS=ifI0..^SSITIS
7 iftrue I0..^SifI0..^SSITIS=SI
8 7 3ad2ant3 SWordATWordBI0..^SifI0..^SSITIS=SI
9 6 8 sylan9eqr SWordATWordBI0..^Sx=Iifx0..^SSxTxS=SI
10 id I0..^SI0..^S
11 lencl TWordBT0
12 elfzoext I0..^ST0I0..^S+T
13 10 11 12 syl2anr TWordBI0..^SI0..^S+T
14 13 3adant1 SWordATWordBI0..^SI0..^S+T
15 fvexd SWordATWordBI0..^SSIV
16 2 9 14 15 fvmptd SWordATWordBI0..^SS++TI=SI