Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvmptd
Metamath Proof Explorer
Description: Deduction version of fvmpt . (Contributed by Scott Fenton , 18-Feb-2013) (Revised by Mario Carneiro , 31-Aug-2015) (Proof
shortened by AV , 29-Mar-2024)
Ref
Expression
Hypotheses
fvmptd.1
⊢ φ → F = x ∈ D ⟼ B
fvmptd.2
⊢ φ ∧ x = A → B = C
fvmptd.3
⊢ φ → A ∈ D
fvmptd.4
⊢ φ → C ∈ V
Assertion
fvmptd
⊢ φ → F ⁡ A = C
Proof
Step
Hyp
Ref
Expression
1
fvmptd.1
⊢ φ → F = x ∈ D ⟼ B
2
fvmptd.2
⊢ φ ∧ x = A → B = C
3
fvmptd.3
⊢ φ → A ∈ D
4
fvmptd.4
⊢ φ → C ∈ V
5
nfv
⊢ Ⅎ x φ
6
nfcv
⊢ Ⅎ _ x A
7
nfcv
⊢ Ⅎ _ x C
8
1 2 3 4 5 6 7
fvmptdf
⊢ φ → F ⁡ A = C