Metamath Proof Explorer


Theorem fvmptd2

Description: Deduction version of fvmpt (where the definition of the mapping does not depend on the common antecedent ph ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fvmptd2.1 F=xDB
fvmptd2.2 φx=AB=C
fvmptd2.3 φAD
fvmptd2.4 φCV
Assertion fvmptd2 φFA=C

Proof

Step Hyp Ref Expression
1 fvmptd2.1 F=xDB
2 fvmptd2.2 φx=AB=C
3 fvmptd2.3 φAD
4 fvmptd2.4 φCV
5 1 a1i φF=xDB
6 5 2 3 4 fvmptd φFA=C