Metamath Proof Explorer


Theorem fvmptd2

Description: Deduction version of fvmpt (where the definition of the mapping does not depend on the common antecedent ph ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fvmptd2.1
|- F = ( x e. D |-> B )
fvmptd2.2
|- ( ( ph /\ x = A ) -> B = C )
fvmptd2.3
|- ( ph -> A e. D )
fvmptd2.4
|- ( ph -> C e. V )
Assertion fvmptd2
|- ( ph -> ( F ` A ) = C )

Proof

Step Hyp Ref Expression
1 fvmptd2.1
 |-  F = ( x e. D |-> B )
2 fvmptd2.2
 |-  ( ( ph /\ x = A ) -> B = C )
3 fvmptd2.3
 |-  ( ph -> A e. D )
4 fvmptd2.4
 |-  ( ph -> C e. V )
5 1 a1i
 |-  ( ph -> F = ( x e. D |-> B ) )
6 5 2 3 4 fvmptd
 |-  ( ph -> ( F ` A ) = C )