Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvmptd2
Metamath Proof Explorer
Description: Deduction version of fvmpt (where the definition of the mapping does
not depend on the common antecedent ph ). (Contributed by Glauco
Siliprandi , 23-Oct-2021)
Ref
Expression
Hypotheses
fvmptd2.1
⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 )
fvmptd2.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
fvmptd2.3
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 )
fvmptd2.4
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 )
Assertion
fvmptd2
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐶 )
Proof
Step
Hyp
Ref
Expression
1
fvmptd2.1
⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 )
2
fvmptd2.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
3
fvmptd2.3
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 )
4
fvmptd2.4
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 )
5
1
a1i
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) )
6
5 2 3 4
fvmptd
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐶 )