Metamath Proof Explorer


Theorem fvmptd2

Description: Deduction version of fvmpt (where the definition of the mapping does not depend on the common antecedent ph ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fvmptd2.1 𝐹 = ( 𝑥𝐷𝐵 )
fvmptd2.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
fvmptd2.3 ( 𝜑𝐴𝐷 )
fvmptd2.4 ( 𝜑𝐶𝑉 )
Assertion fvmptd2 ( 𝜑 → ( 𝐹𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 fvmptd2.1 𝐹 = ( 𝑥𝐷𝐵 )
2 fvmptd2.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
3 fvmptd2.3 ( 𝜑𝐴𝐷 )
4 fvmptd2.4 ( 𝜑𝐶𝑉 )
5 1 a1i ( 𝜑𝐹 = ( 𝑥𝐷𝐵 ) )
6 5 2 3 4 fvmptd ( 𝜑 → ( 𝐹𝐴 ) = 𝐶 )