Metamath Proof Explorer


Theorem mptrcl

Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020)

Ref Expression
Hypothesis mptrcl.1 F=xAB
Assertion mptrcl IFXXA

Proof

Step Hyp Ref Expression
1 mptrcl.1 F=xAB
2 n0i IFX¬FX=
3 1 dmmptss domFA
4 3 sseli XdomFXA
5 ndmfv ¬XdomFFX=
6 4 5 nsyl4 ¬FX=XA
7 2 6 syl IFXXA