Metamath Proof Explorer


Theorem ccatval2

Description: Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Assertion ccatval2 SWordBTWordBIS..^S+TS++TI=TIS

Proof

Step Hyp Ref Expression
1 ccatfval SWordBTWordBS++T=x0..^S+Tifx0..^SSxTxS
2 1 3adant3 SWordBTWordBIS..^S+TS++T=x0..^S+Tifx0..^SSxTxS
3 eleq1 x=Ix0..^SI0..^S
4 fveq2 x=ISx=SI
5 fvoveq1 x=ITxS=TIS
6 3 4 5 ifbieq12d x=Iifx0..^SSxTxS=ifI0..^SSITIS
7 fzodisj 0..^SS..^S+T=
8 minel IS..^S+T0..^SS..^S+T=¬I0..^S
9 7 8 mpan2 IS..^S+T¬I0..^S
10 9 3ad2ant3 SWordBTWordBIS..^S+T¬I0..^S
11 10 iffalsed SWordBTWordBIS..^S+TifI0..^SSITIS=TIS
12 6 11 sylan9eqr SWordBTWordBIS..^S+Tx=Iifx0..^SSxTxS=TIS
13 wrdfin SWordBSFin
14 13 adantr SWordBTWordBSFin
15 hashcl SFinS0
16 fzoss1 S0S..^S+T0..^S+T
17 nn0uz 0=0
18 16 17 eleq2s S0S..^S+T0..^S+T
19 14 15 18 3syl SWordBTWordBS..^S+T0..^S+T
20 19 sseld SWordBTWordBIS..^S+TI0..^S+T
21 20 3impia SWordBTWordBIS..^S+TI0..^S+T
22 fvexd SWordBTWordBIS..^S+TTISV
23 2 12 21 22 fvmptd SWordBTWordBIS..^S+TS++TI=TIS