Metamath Proof Explorer


Theorem fzoss1

Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzoss1 KMK..^NM..^N

Proof

Step Hyp Ref Expression
1 sseq1 K..^N=K..^NM..^NM..^N
2 fzon0 K..^NKK..^N
3 elfzoel2 KK..^NN
4 2 3 sylbi K..^NN
5 fzss1 KMKN1MN1
6 5 adantr KMNKN1MN1
7 fzoval NK..^N=KN1
8 7 adantl KMNK..^N=KN1
9 fzoval NM..^N=MN1
10 9 adantl KMNM..^N=MN1
11 6 8 10 3sstr4d KMNK..^NM..^N
12 4 11 sylan2 KMK..^NK..^NM..^N
13 0ss M..^N
14 13 a1i KMM..^N
15 1 12 14 pm2.61ne KMK..^NM..^N