Metamath Proof Explorer


Theorem fzoss1

Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzoss1 K M K ..^ N M ..^ N

Proof

Step Hyp Ref Expression
1 sseq1 K ..^ N = K ..^ N M ..^ N M ..^ N
2 fzon0 K ..^ N K K ..^ N
3 elfzoel2 K K ..^ N N
4 2 3 sylbi K ..^ N N
5 fzss1 K M K N 1 M N 1
6 5 adantr K M N K N 1 M N 1
7 fzoval N K ..^ N = K N 1
8 7 adantl K M N K ..^ N = K N 1
9 fzoval N M ..^ N = M N 1
10 9 adantl K M N M ..^ N = M N 1
11 6 8 10 3sstr4d K M N K ..^ N M ..^ N
12 4 11 sylan2 K M K ..^ N K ..^ N M ..^ N
13 0ss M ..^ N
14 13 a1i K M M ..^ N
15 1 12 14 pm2.61ne K M K ..^ N M ..^ N