Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
|- ( ( K ..^ N ) = (/) -> ( ( K ..^ N ) C_ ( M ..^ N ) <-> (/) C_ ( M ..^ N ) ) ) |
2 |
|
fzon0 |
|- ( ( K ..^ N ) =/= (/) <-> K e. ( K ..^ N ) ) |
3 |
|
elfzoel2 |
|- ( K e. ( K ..^ N ) -> N e. ZZ ) |
4 |
2 3
|
sylbi |
|- ( ( K ..^ N ) =/= (/) -> N e. ZZ ) |
5 |
|
fzss1 |
|- ( K e. ( ZZ>= ` M ) -> ( K ... ( N - 1 ) ) C_ ( M ... ( N - 1 ) ) ) |
6 |
5
|
adantr |
|- ( ( K e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( K ... ( N - 1 ) ) C_ ( M ... ( N - 1 ) ) ) |
7 |
|
fzoval |
|- ( N e. ZZ -> ( K ..^ N ) = ( K ... ( N - 1 ) ) ) |
8 |
7
|
adantl |
|- ( ( K e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( K ..^ N ) = ( K ... ( N - 1 ) ) ) |
9 |
|
fzoval |
|- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
10 |
9
|
adantl |
|- ( ( K e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
11 |
6 8 10
|
3sstr4d |
|- ( ( K e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( K ..^ N ) C_ ( M ..^ N ) ) |
12 |
4 11
|
sylan2 |
|- ( ( K e. ( ZZ>= ` M ) /\ ( K ..^ N ) =/= (/) ) -> ( K ..^ N ) C_ ( M ..^ N ) ) |
13 |
|
0ss |
|- (/) C_ ( M ..^ N ) |
14 |
13
|
a1i |
|- ( K e. ( ZZ>= ` M ) -> (/) C_ ( M ..^ N ) ) |
15 |
1 12 14
|
pm2.61ne |
|- ( K e. ( ZZ>= ` M ) -> ( K ..^ N ) C_ ( M ..^ N ) ) |