Metamath Proof Explorer


Theorem fzon0

Description: A half-open integer interval is nonempty iff it contains its left endpoint. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzon0
|- ( ( M ..^ N ) =/= (/) <-> M e. ( M ..^ N ) )

Proof

Step Hyp Ref Expression
1 n0
 |-  ( ( M ..^ N ) =/= (/) <-> E. x x e. ( M ..^ N ) )
2 elfzolt3b
 |-  ( x e. ( M ..^ N ) -> M e. ( M ..^ N ) )
3 2 exlimiv
 |-  ( E. x x e. ( M ..^ N ) -> M e. ( M ..^ N ) )
4 1 3 sylbi
 |-  ( ( M ..^ N ) =/= (/) -> M e. ( M ..^ N ) )
5 ne0i
 |-  ( M e. ( M ..^ N ) -> ( M ..^ N ) =/= (/) )
6 4 5 impbii
 |-  ( ( M ..^ N ) =/= (/) <-> M e. ( M ..^ N ) )