Metamath Proof Explorer


Theorem 3sstr4d

Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995) (Proof shortened by Eric Schmidt, 26-Jan-2007)

Ref Expression
Hypotheses 3sstr4d.1 φAB
3sstr4d.2 φC=A
3sstr4d.3 φD=B
Assertion 3sstr4d φCD

Proof

Step Hyp Ref Expression
1 3sstr4d.1 φAB
2 3sstr4d.2 φC=A
3 3sstr4d.3 φD=B
4 2 3 sseq12d φCDAB
5 1 4 mpbird φCD