Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
3sstr4d
Metamath Proof Explorer
Description: Substitution of equality into both sides of a subclass relationship.
(Contributed by NM , 30-Nov-1995) (Proof shortened by Eric Schmidt , 26-Jan-2007)
Ref
Expression
Hypotheses
3sstr4d.1
⊢ φ → A ⊆ B
3sstr4d.2
⊢ φ → C = A
3sstr4d.3
⊢ φ → D = B
Assertion
3sstr4d
⊢ φ → C ⊆ D
Proof
Step
Hyp
Ref
Expression
1
3sstr4d.1
⊢ φ → A ⊆ B
2
3sstr4d.2
⊢ φ → C = A
3
3sstr4d.3
⊢ φ → D = B
4
2 3
sseq12d
⊢ φ → C ⊆ D ↔ A ⊆ B
5
1 4
mpbird
⊢ φ → C ⊆ D