Metamath Proof Explorer


Theorem 3sstr4d

Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995) (Proof shortened by Eric Schmidt, 26-Jan-2007)

Ref Expression
Hypotheses 3sstr4d.1 ( 𝜑𝐴𝐵 )
3sstr4d.2 ( 𝜑𝐶 = 𝐴 )
3sstr4d.3 ( 𝜑𝐷 = 𝐵 )
Assertion 3sstr4d ( 𝜑𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 3sstr4d.1 ( 𝜑𝐴𝐵 )
2 3sstr4d.2 ( 𝜑𝐶 = 𝐴 )
3 3sstr4d.3 ( 𝜑𝐷 = 𝐵 )
4 2 3 sseq12d ( 𝜑 → ( 𝐶𝐷𝐴𝐵 ) )
5 1 4 mpbird ( 𝜑𝐶𝐷 )