Metamath Proof Explorer


Theorem fzoss2

Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzoss2 NKM..^KM..^N

Proof

Step Hyp Ref Expression
1 eluzel2 NKK
2 peano2zm KK1
3 1 2 syl NKK1
4 1zzd NK1
5 id NKNK
6 1 zcnd NKK
7 ax-1cn 1
8 npcan K1K-1+1=K
9 6 7 8 sylancl NKK-1+1=K
10 9 fveq2d NKK-1+1=K
11 5 10 eleqtrrd NKNK-1+1
12 eluzsub K11NK-1+1N1K1
13 3 4 11 12 syl3anc NKN1K1
14 fzss2 N1K1MK1MN1
15 13 14 syl NKMK1MN1
16 fzoval KM..^K=MK1
17 1 16 syl NKM..^K=MK1
18 eluzelz NKN
19 fzoval NM..^N=MN1
20 18 19 syl NKM..^N=MN1
21 15 17 20 3sstr4d NKM..^KM..^N