Metamath Proof Explorer


Theorem eluzsub

Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by SN, 7-Feb-2025)

Ref Expression
Assertion eluzsub MKNM+KNKM

Proof

Step Hyp Ref Expression
1 simp1 MKNM+KM
2 eluzelz NM+KN
3 2 3ad2ant3 MKNM+KN
4 simp2 MKNM+KK
5 3 4 zsubcld MKNM+KNK
6 eluzle NM+KM+KN
7 6 3ad2ant3 MKNM+KM+KN
8 zre MM
9 zre KK
10 eluzelre NM+KN
11 leaddsub MKNM+KNMNK
12 8 9 10 11 syl3an MKNM+KM+KNMNK
13 7 12 mpbid MKNM+KMNK
14 eluz2 NKMMNKMNK
15 1 5 13 14 syl3anbrc MKNM+KNKM