Metamath Proof Explorer


Theorem eluzaddi

Description: Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007)

Ref Expression
Hypotheses eluzaddi.1 M
eluzaddi.2 K
Assertion eluzaddi N M N + K M + K

Proof

Step Hyp Ref Expression
1 eluzaddi.1 M
2 eluzaddi.2 K
3 eluzelz N M N
4 zaddcl N K N + K
5 3 2 4 sylancl N M N + K
6 1 eluz1i N M N M N
7 zre N N
8 1 zrei M
9 2 zrei K
10 leadd1 M N K M N M + K N + K
11 8 9 10 mp3an13 N M N M + K N + K
12 7 11 syl N M N M + K N + K
13 12 biimpa N M N M + K N + K
14 6 13 sylbi N M M + K N + K
15 zaddcl M K M + K
16 1 2 15 mp2an M + K
17 16 eluz1i N + K M + K N + K M + K N + K
18 5 14 17 sylanbrc N M N + K M + K