Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
eluzaddi
Next ⟩
eluzsubi
Metamath Proof Explorer
Ascii
Unicode
Theorem
eluzaddi
Description:
Membership in a later upper set of integers.
(Contributed by
Paul Chapman
, 22-Nov-2007)
Ref
Expression
Hypotheses
eluzaddi.1
⊢
M
∈
ℤ
eluzaddi.2
⊢
K
∈
ℤ
Assertion
eluzaddi
⊢
N
∈
ℤ
≥
M
→
N
+
K
∈
ℤ
≥
M
+
K
Proof
Step
Hyp
Ref
Expression
1
eluzaddi.1
⊢
M
∈
ℤ
2
eluzaddi.2
⊢
K
∈
ℤ
3
eluzelz
⊢
N
∈
ℤ
≥
M
→
N
∈
ℤ
4
zaddcl
⊢
N
∈
ℤ
∧
K
∈
ℤ
→
N
+
K
∈
ℤ
5
3
2
4
sylancl
⊢
N
∈
ℤ
≥
M
→
N
+
K
∈
ℤ
6
1
eluz1i
⊢
N
∈
ℤ
≥
M
↔
N
∈
ℤ
∧
M
≤
N
7
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
8
1
zrei
⊢
M
∈
ℝ
9
2
zrei
⊢
K
∈
ℝ
10
leadd1
⊢
M
∈
ℝ
∧
N
∈
ℝ
∧
K
∈
ℝ
→
M
≤
N
↔
M
+
K
≤
N
+
K
11
8
9
10
mp3an13
⊢
N
∈
ℝ
→
M
≤
N
↔
M
+
K
≤
N
+
K
12
7
11
syl
⊢
N
∈
ℤ
→
M
≤
N
↔
M
+
K
≤
N
+
K
13
12
biimpa
⊢
N
∈
ℤ
∧
M
≤
N
→
M
+
K
≤
N
+
K
14
6
13
sylbi
⊢
N
∈
ℤ
≥
M
→
M
+
K
≤
N
+
K
15
zaddcl
⊢
M
∈
ℤ
∧
K
∈
ℤ
→
M
+
K
∈
ℤ
16
1
2
15
mp2an
⊢
M
+
K
∈
ℤ
17
16
eluz1i
⊢
N
+
K
∈
ℤ
≥
M
+
K
↔
N
+
K
∈
ℤ
∧
M
+
K
≤
N
+
K
18
5
14
17
sylanbrc
⊢
N
∈
ℤ
≥
M
→
N
+
K
∈
ℤ
≥
M
+
K