Metamath Proof Explorer


Theorem leadd1

Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 18-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion leadd1 ABCABA+CB+C

Proof

Step Hyp Ref Expression
1 ltadd1 BACB<AB+C<A+C
2 1 3com12 ABCB<AB+C<A+C
3 2 notbid ABC¬B<A¬B+C<A+C
4 simp1 ABCA
5 simp2 ABCB
6 4 5 lenltd ABCAB¬B<A
7 simp3 ABCC
8 4 7 readdcld ABCA+C
9 5 7 readdcld ABCB+C
10 8 9 lenltd ABCA+CB+C¬B+C<A+C
11 3 6 10 3bitr4d ABCABA+CB+C