Metamath Proof Explorer


Theorem leadd2

Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 26-Oct-1999)

Ref Expression
Assertion leadd2 ABCABC+AC+B

Proof

Step Hyp Ref Expression
1 leadd1 ABCABA+CB+C
2 simp1 ABCA
3 2 recnd ABCA
4 simp3 ABCC
5 4 recnd ABCC
6 3 5 addcomd ABCA+C=C+A
7 simp2 ABCB
8 7 recnd ABCB
9 8 5 addcomd ABCB+C=C+B
10 6 9 breq12d ABCA+CB+CC+AC+B
11 1 10 bitrd ABCABC+AC+B