Metamath Proof Explorer


Theorem addcomd

Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses muld.1 φA
addcomd.2 φB
Assertion addcomd φA+B=B+A

Proof

Step Hyp Ref Expression
1 muld.1 φA
2 addcomd.2 φB
3 1cnd φ1
4 3 3 addcld φ1+1
5 4 1 2 adddid φ1+1A+B=1+1A+1+1B
6 1 2 addcld φA+B
7 1p1times A+B1+1A+B=A+B+A+B
8 6 7 syl φ1+1A+B=A+B+A+B
9 1p1times A1+1A=A+A
10 1 9 syl φ1+1A=A+A
11 1p1times B1+1B=B+B
12 2 11 syl φ1+1B=B+B
13 10 12 oveq12d φ1+1A+1+1B=A+A+B+B
14 5 8 13 3eqtr3rd φA+A+B+B=A+B+A+B
15 1 1 addcld φA+A
16 15 2 2 addassd φA+A+B+B=A+A+B+B
17 6 1 2 addassd φA+B+A+B=A+B+A+B
18 14 16 17 3eqtr4d φA+A+B+B=A+B+A+B
19 15 2 addcld φA+A+B
20 6 1 addcld φA+B+A
21 addcan2 A+A+BA+B+ABA+A+B+B=A+B+A+BA+A+B=A+B+A
22 19 20 2 21 syl3anc φA+A+B+B=A+B+A+BA+A+B=A+B+A
23 18 22 mpbid φA+A+B=A+B+A
24 1 1 2 addassd φA+A+B=A+A+B
25 1 2 1 addassd φA+B+A=A+B+A
26 23 24 25 3eqtr3d φA+A+B=A+B+A
27 2 1 addcld φB+A
28 addcan AA+BB+AA+A+B=A+B+AA+B=B+A
29 1 6 27 28 syl3anc φA+A+B=A+B+AA+B=B+A
30 26 29 mpbid φA+B=B+A