Metamath Proof Explorer


Theorem addcan

Description: Cancellation law for addition. Theorem I.1 of Apostol p. 18. (Contributed by NM, 22-Nov-1994) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion addcan ABCA+B=A+CB=C

Proof

Step Hyp Ref Expression
1 cnegex2 Axx+A=0
2 1 3ad2ant1 ABCxx+A=0
3 oveq2 A+B=A+Cx+A+B=x+A+C
4 simprr ABCxx+A=0x+A=0
5 4 oveq1d ABCxx+A=0x+A+B=0+B
6 simprl ABCxx+A=0x
7 simpl1 ABCxx+A=0A
8 simpl2 ABCxx+A=0B
9 6 7 8 addassd ABCxx+A=0x+A+B=x+A+B
10 addlid B0+B=B
11 8 10 syl ABCxx+A=00+B=B
12 5 9 11 3eqtr3d ABCxx+A=0x+A+B=B
13 4 oveq1d ABCxx+A=0x+A+C=0+C
14 simpl3 ABCxx+A=0C
15 6 7 14 addassd ABCxx+A=0x+A+C=x+A+C
16 addlid C0+C=C
17 14 16 syl ABCxx+A=00+C=C
18 13 15 17 3eqtr3d ABCxx+A=0x+A+C=C
19 12 18 eqeq12d ABCxx+A=0x+A+B=x+A+CB=C
20 3 19 imbitrid ABCxx+A=0A+B=A+CB=C
21 oveq2 B=CA+B=A+C
22 20 21 impbid1 ABCxx+A=0A+B=A+CB=C
23 2 22 rexlimddv ABCA+B=A+CB=C