Metamath Proof Explorer


Theorem cnegex2

Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion cnegex2 Axx+A=0

Proof

Step Hyp Ref Expression
1 ax-icn i
2 1 1 mulcli ii
3 mulcl iiAiiA
4 2 3 mpan AiiA
5 mullid A1A=A
6 5 oveq2d AiiA+1A=iiA+A
7 ax-i2m1 ii+1=0
8 7 oveq1i ii+1A=0A
9 ax-1cn 1
10 adddir ii1Aii+1A=iiA+1A
11 2 9 10 mp3an12 Aii+1A=iiA+1A
12 mul02 A0A=0
13 8 11 12 3eqtr3a AiiA+1A=0
14 6 13 eqtr3d AiiA+A=0
15 oveq1 x=iiAx+A=iiA+A
16 15 eqeq1d x=iiAx+A=0iiA+A=0
17 16 rspcev iiAiiA+A=0xx+A=0
18 4 14 17 syl2anc Axx+A=0