Description: Multiplication by 0 . Theorem I.6 of Apostol p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999) (Revised by Scott Fenton, 3-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | mul02 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre | |
|
2 | 0cn | |
|
3 | recn | |
|
4 | ax-icn | |
|
5 | recn | |
|
6 | mulcl | |
|
7 | 4 5 6 | sylancr | |
8 | adddi | |
|
9 | 2 3 7 8 | mp3an3an | |
10 | mul02lem2 | |
|
11 | mul12 | |
|
12 | 2 4 5 11 | mp3an12i | |
13 | mul02lem2 | |
|
14 | 13 | oveq2d | |
15 | 12 14 | eqtrd | |
16 | 10 15 | oveqan12d | |
17 | 9 16 | eqtrd | |
18 | cnre | |
|
19 | 2 18 | ax-mp | |
20 | oveq2 | |
|
21 | 20 | eqeq1d | |
22 | 17 21 | syl5ibrcom | |
23 | 22 | rexlimivv | |
24 | 19 23 | ax-mp | |
25 | 0re | |
|
26 | mul02lem2 | |
|
27 | 25 26 | ax-mp | |
28 | 24 27 | eqtr3i | |
29 | 17 28 | eqtrdi | |
30 | oveq2 | |
|
31 | 30 | eqeq1d | |
32 | 29 31 | syl5ibrcom | |
33 | 32 | rexlimivv | |
34 | 1 33 | syl | |