Metamath Proof Explorer


Theorem mul02

Description: Multiplication by 0 . Theorem I.6 of Apostol p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999) (Revised by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion mul02 A0A=0

Proof

Step Hyp Ref Expression
1 cnre AxyA=x+iy
2 0cn 0
3 recn xx
4 ax-icn i
5 recn yy
6 mulcl iyiy
7 4 5 6 sylancr yiy
8 adddi 0xiy0x+iy=0x+0iy
9 2 3 7 8 mp3an3an xy0x+iy=0x+0iy
10 mul02lem2 x0x=0
11 mul12 0iy0iy=i0y
12 2 4 5 11 mp3an12i y0iy=i0y
13 mul02lem2 y0y=0
14 13 oveq2d yi0y=i0
15 12 14 eqtrd y0iy=i0
16 10 15 oveqan12d xy0x+0iy=0+i0
17 9 16 eqtrd xy0x+iy=0+i0
18 cnre 0xy0=x+iy
19 2 18 ax-mp xy0=x+iy
20 oveq2 0=x+iy00=0x+iy
21 20 eqeq1d 0=x+iy00=0+i00x+iy=0+i0
22 17 21 syl5ibrcom xy0=x+iy00=0+i0
23 22 rexlimivv xy0=x+iy00=0+i0
24 19 23 ax-mp 00=0+i0
25 0re 0
26 mul02lem2 000=0
27 25 26 ax-mp 00=0
28 24 27 eqtr3i 0+i0=0
29 17 28 eqtrdi xy0x+iy=0
30 oveq2 A=x+iy0A=0x+iy
31 30 eqeq1d A=x+iy0A=00x+iy=0
32 29 31 syl5ibrcom xyA=x+iy0A=0
33 32 rexlimivv xyA=x+iy0A=0
34 1 33 syl A0A=0