Metamath Proof Explorer


Theorem mul02lem2

Description: Lemma for mul02 . Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion mul02lem2 A0A=0

Proof

Step Hyp Ref Expression
1 ax-1ne0 10
2 ax-1cn 1
3 mul02lem1 A0A011=1+1
4 2 3 mpan2 A0A01=1+1
5 4 eqcomd A0A01+1=1
6 5 oveq2d A0A0ii+1+1=ii+1
7 ax-icn i
8 7 7 mulcli ii
9 8 2 2 addassi ii+1+1=ii+1+1
10 ax-i2m1 ii+1=0
11 10 oveq1i ii+1+1=0+1
12 9 11 eqtr3i ii+1+1=0+1
13 00id 0+0=0
14 10 13 eqtr4i ii+1=0+0
15 6 12 14 3eqtr3g A0A00+1=0+0
16 1re 1
17 0re 0
18 readdcan 1000+1=0+01=0
19 16 17 17 18 mp3an 0+1=0+01=0
20 15 19 sylib A0A01=0
21 20 ex A0A01=0
22 21 necon1d A100A=0
23 1 22 mpi A0A=0