Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | 00id | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |
|
2 | ax-rnegex | |
|
3 | oveq2 | |
|
4 | 3 | eqeq1d | |
5 | 4 | biimpd | |
6 | 5 | adantld | |
7 | ax-rrecex | |
|
8 | 7 | adantlr | |
9 | simplll | |
|
10 | 9 | recnd | |
11 | simprl | |
|
12 | 11 | recnd | |
13 | 0cn | |
|
14 | mulass | |
|
15 | 13 14 | mp3an3 | |
16 | 10 12 15 | syl2anc | |
17 | oveq1 | |
|
18 | 13 | mullidi | |
19 | 17 18 | eqtrdi | |
20 | 19 | ad2antll | |
21 | 16 20 | eqtr3d | |
22 | 21 | oveq1d | |
23 | simpllr | |
|
24 | 23 | oveq1d | |
25 | remulcl | |
|
26 | 1 25 | mpan2 | |
27 | 26 | ad2antrl | |
28 | 27 | recnd | |
29 | adddir | |
|
30 | 13 10 28 29 | mp3an2i | |
31 | 24 30 | eqtr3d | |
32 | 31 | oveq1d | |
33 | remulcl | |
|
34 | 1 26 33 | sylancr | |
35 | 34 | ad2antrl | |
36 | 35 | recnd | |
37 | remulcl | |
|
38 | 9 27 37 | syl2anc | |
39 | 38 | recnd | |
40 | addass | |
|
41 | 13 40 | mp3an3 | |
42 | 36 39 41 | syl2anc | |
43 | 32 42 | eqtr2d | |
44 | 26 37 | sylan2 | |
45 | readdcl | |
|
46 | 44 1 45 | sylancl | |
47 | 9 11 46 | syl2anc | |
48 | readdcan | |
|
49 | 1 48 | mp3an2 | |
50 | 47 35 49 | syl2anc | |
51 | 43 50 | mpbid | |
52 | 22 51 | eqtr3d | |
53 | 8 52 | rexlimddv | |
54 | 53 | expcom | |
55 | 6 54 | pm2.61ine | |
56 | 55 | rexlimiva | |
57 | 1 2 56 | mp2b | |