Metamath Proof Explorer


Theorem mul02lem2

Description: Lemma for mul02 . Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion mul02lem2 ( 𝐴 ∈ ℝ → ( 0 · 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 ≠ 0
2 ax-1cn 1 ∈ ℂ
3 mul02lem1 ( ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) ∧ 1 ∈ ℂ ) → 1 = ( 1 + 1 ) )
4 2 3 mpan2 ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → 1 = ( 1 + 1 ) )
5 4 eqcomd ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → ( 1 + 1 ) = 1 )
6 5 oveq2d ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → ( ( i · i ) + ( 1 + 1 ) ) = ( ( i · i ) + 1 ) )
7 ax-icn i ∈ ℂ
8 7 7 mulcli ( i · i ) ∈ ℂ
9 8 2 2 addassi ( ( ( i · i ) + 1 ) + 1 ) = ( ( i · i ) + ( 1 + 1 ) )
10 ax-i2m1 ( ( i · i ) + 1 ) = 0
11 10 oveq1i ( ( ( i · i ) + 1 ) + 1 ) = ( 0 + 1 )
12 9 11 eqtr3i ( ( i · i ) + ( 1 + 1 ) ) = ( 0 + 1 )
13 00id ( 0 + 0 ) = 0
14 10 13 eqtr4i ( ( i · i ) + 1 ) = ( 0 + 0 )
15 6 12 14 3eqtr3g ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → ( 0 + 1 ) = ( 0 + 0 ) )
16 1re 1 ∈ ℝ
17 0re 0 ∈ ℝ
18 readdcan ( ( 1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 ) )
19 16 17 17 18 mp3an ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 )
20 15 19 sylib ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → 1 = 0 )
21 20 ex ( 𝐴 ∈ ℝ → ( ( 0 · 𝐴 ) ≠ 0 → 1 = 0 ) )
22 21 necon1d ( 𝐴 ∈ ℝ → ( 1 ≠ 0 → ( 0 · 𝐴 ) = 0 ) )
23 1 22 mpi ( 𝐴 ∈ ℝ → ( 0 · 𝐴 ) = 0 )