Step |
Hyp |
Ref |
Expression |
1 |
|
cnegex2 |
|- ( A e. CC -> E. x e. CC ( x + A ) = 0 ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> E. x e. CC ( x + A ) = 0 ) |
3 |
|
oveq2 |
|- ( ( A + B ) = ( A + C ) -> ( x + ( A + B ) ) = ( x + ( A + C ) ) ) |
4 |
|
simprr |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + A ) = 0 ) |
5 |
4
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + B ) = ( 0 + B ) ) |
6 |
|
simprl |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> x e. CC ) |
7 |
|
simpl1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> A e. CC ) |
8 |
|
simpl2 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> B e. CC ) |
9 |
6 7 8
|
addassd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + B ) = ( x + ( A + B ) ) ) |
10 |
|
addid2 |
|- ( B e. CC -> ( 0 + B ) = B ) |
11 |
8 10
|
syl |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( 0 + B ) = B ) |
12 |
5 9 11
|
3eqtr3d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + ( A + B ) ) = B ) |
13 |
4
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + C ) = ( 0 + C ) ) |
14 |
|
simpl3 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> C e. CC ) |
15 |
6 7 14
|
addassd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + C ) = ( x + ( A + C ) ) ) |
16 |
|
addid2 |
|- ( C e. CC -> ( 0 + C ) = C ) |
17 |
14 16
|
syl |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( 0 + C ) = C ) |
18 |
13 15 17
|
3eqtr3d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + ( A + C ) ) = C ) |
19 |
12 18
|
eqeq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + ( A + B ) ) = ( x + ( A + C ) ) <-> B = C ) ) |
20 |
3 19
|
syl5ib |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( A + B ) = ( A + C ) -> B = C ) ) |
21 |
|
oveq2 |
|- ( B = C -> ( A + B ) = ( A + C ) ) |
22 |
20 21
|
impbid1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |
23 |
2 22
|
rexlimddv |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |