Metamath Proof Explorer


Theorem adddid

Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 φA
addcld.2 φB
addassd.3 φC
Assertion adddid φAB+C=AB+AC

Proof

Step Hyp Ref Expression
1 addcld.1 φA
2 addcld.2 φB
3 addassd.3 φC
4 adddi ABCAB+C=AB+AC
5 1 2 3 4 syl3anc φAB+C=AB+AC