Metamath Proof Explorer


Theorem adddird

Description: Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 φA
addcld.2 φB
addassd.3 φC
Assertion adddird φA+BC=AC+BC

Proof

Step Hyp Ref Expression
1 addcld.1 φA
2 addcld.2 φB
3 addassd.3 φC
4 adddir ABCA+BC=AC+BC
5 1 2 3 4 syl3anc φA+BC=AC+BC