| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							leadd1 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( A + C ) <_ ( B + C ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR )  | 
						
						
							| 3 | 
							
								2
							 | 
							recnd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC )  | 
						
						
							| 4 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR )  | 
						
						
							| 5 | 
							
								4
							 | 
							recnd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							addcomd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + C ) = ( C + A ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR )  | 
						
						
							| 8 | 
							
								7
							 | 
							recnd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC )  | 
						
						
							| 9 | 
							
								8 5
							 | 
							addcomd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) = ( C + B ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							breq12d | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + C ) <_ ( B + C ) <-> ( C + A ) <_ ( C + B ) ) )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							bitrd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( C + A ) <_ ( C + B ) ) )  |