Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
2 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
3 |
1 2
|
resubcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A - B ) e. RR ) |
4 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
5 |
|
ltadd1 |
|- ( ( ( A - B ) e. RR /\ C e. RR /\ B e. RR ) -> ( ( A - B ) < C <-> ( ( A - B ) + B ) < ( C + B ) ) ) |
6 |
3 4 2 5
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> ( ( A - B ) + B ) < ( C + B ) ) ) |
7 |
1
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
8 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
9 |
7 8
|
npcand |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) + B ) = A ) |
10 |
9
|
breq1d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A - B ) + B ) < ( C + B ) <-> A < ( C + B ) ) ) |
11 |
6 10
|
bitrd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> A < ( C + B ) ) ) |