Step |
Hyp |
Ref |
Expression |
1 |
|
ltadd2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C + A ) < ( C + B ) ) ) |
2 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
3 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
4 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
5 |
4
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
6 |
3 5
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + A ) = ( A + C ) ) |
7 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
8 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
9 |
3 8
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + B ) = ( B + C ) ) |
10 |
6 9
|
breq12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) < ( C + B ) <-> ( A + C ) < ( B + C ) ) ) |
11 |
1 10
|
bitrd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( A + C ) < ( B + C ) ) ) |