| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltadd2 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐶  +  𝐴 )  <  ( 𝐶  +  𝐵 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℝ )  | 
						
						
							| 3 | 
							
								2
							 | 
							recnd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐴  ∈  ℝ )  | 
						
						
							| 5 | 
							
								4
							 | 
							recnd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							addcomd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  +  𝐴 )  =  ( 𝐴  +  𝐶 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℝ )  | 
						
						
							| 8 | 
							
								7
							 | 
							recnd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℂ )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							addcomd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  +  𝐵 )  =  ( 𝐵  +  𝐶 ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							breq12d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐶  +  𝐴 )  <  ( 𝐶  +  𝐵 )  ↔  ( 𝐴  +  𝐶 )  <  ( 𝐵  +  𝐶 ) ) )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							bitrd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  +  𝐶 )  <  ( 𝐵  +  𝐶 ) ) )  |