| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							axltadd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  <  𝐵  →  ( 𝐶  +  𝐴 )  <  ( 𝐶  +  𝐵 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝐶  +  𝐴 )  =  ( 𝐶  +  𝐵 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  =  𝐵  →  ( 𝐶  +  𝐴 )  =  ( 𝐶  +  𝐵 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							axltadd | 
							⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵  <  𝐴  →  ( 𝐶  +  𝐵 )  <  ( 𝐶  +  𝐴 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3com12 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵  <  𝐴  →  ( 𝐶  +  𝐵 )  <  ( 𝐶  +  𝐴 ) ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							orim12d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  =  𝐵  ∨  𝐵  <  𝐴 )  →  ( ( 𝐶  +  𝐴 )  =  ( 𝐶  +  𝐵 )  ∨  ( 𝐶  +  𝐵 )  <  ( 𝐶  +  𝐴 ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							con3d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ¬  ( ( 𝐶  +  𝐴 )  =  ( 𝐶  +  𝐵 )  ∨  ( 𝐶  +  𝐵 )  <  ( 𝐶  +  𝐴 ) )  →  ¬  ( 𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐴  ∈  ℝ )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							readdcld | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  +  𝐴 )  ∈  ℝ )  | 
						
						
							| 11 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℝ )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							readdcld | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  +  𝐵 )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								
							 | 
							axlttri | 
							⊢ ( ( ( 𝐶  +  𝐴 )  ∈  ℝ  ∧  ( 𝐶  +  𝐵 )  ∈  ℝ )  →  ( ( 𝐶  +  𝐴 )  <  ( 𝐶  +  𝐵 )  ↔  ¬  ( ( 𝐶  +  𝐴 )  =  ( 𝐶  +  𝐵 )  ∨  ( 𝐶  +  𝐵 )  <  ( 𝐶  +  𝐴 ) ) ) )  | 
						
						
							| 14 | 
							
								10 12 13
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐶  +  𝐴 )  <  ( 𝐶  +  𝐵 )  ↔  ¬  ( ( 𝐶  +  𝐴 )  =  ( 𝐶  +  𝐵 )  ∨  ( 𝐶  +  𝐵 )  <  ( 𝐶  +  𝐴 ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							axlttri | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ¬  ( 𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) ) )  | 
						
						
							| 16 | 
							
								9 11 15
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ¬  ( 𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) ) )  | 
						
						
							| 17 | 
							
								7 14 16
							 | 
							3imtr4d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐶  +  𝐴 )  <  ( 𝐶  +  𝐵 )  →  𝐴  <  𝐵 ) )  | 
						
						
							| 18 | 
							
								1 17
							 | 
							impbid | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐶  +  𝐴 )  <  ( 𝐶  +  𝐵 ) ) )  |