| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							lttri2 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝐴  ≠  0  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan2 | 
							⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ≠  0  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 𝐴  ≠  0  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							lenlt | 
							⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  𝐴  ↔  ¬  𝐴  <  0 ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  ↔  ¬  𝐴  <  0 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpa | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ¬  𝐴  <  0 )  | 
						
						
							| 8 | 
							
								
							 | 
							biorf | 
							⊢ ( ¬  𝐴  <  0  →  ( 0  <  𝐴  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 0  <  𝐴  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							bitr4d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 𝐴  ≠  0  ↔  0  <  𝐴 ) )  |