Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
lttri2 |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. RR -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
4 |
3
|
adantr |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
5 |
|
lenlt |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> -. A < 0 ) ) |
6 |
1 5
|
mpan |
|- ( A e. RR -> ( 0 <_ A <-> -. A < 0 ) ) |
7 |
6
|
biimpa |
|- ( ( A e. RR /\ 0 <_ A ) -> -. A < 0 ) |
8 |
|
biorf |
|- ( -. A < 0 -> ( 0 < A <-> ( A < 0 \/ 0 < A ) ) ) |
9 |
7 8
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( 0 < A <-> ( A < 0 \/ 0 < A ) ) ) |
10 |
4 9
|
bitr4d |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A =/= 0 <-> 0 < A ) ) |