Metamath Proof Explorer


Theorem lttri2

Description: Consequence of trichotomy. (Contributed by NM, 9-Oct-1999)

Ref Expression
Assertion lttri2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ltso < Or ℝ
2 sotrieq ( ( < Or ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
3 1 2 mpan ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
4 3 bicomd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ↔ 𝐴 = 𝐵 ) )
5 4 necon1abid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )