Metamath Proof Explorer


Theorem leaddsub

Description: 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005)

Ref Expression
Assertion leaddsub ABCA+BCACB

Proof

Step Hyp Ref Expression
1 ltsubadd CBACB<AC<A+B
2 1 3com13 ABCCB<AC<A+B
3 resubcl CBCB
4 ltnle CBACB<A¬ACB
5 3 4 stoic3 CBACB<A¬ACB
6 5 3com13 ABCCB<A¬ACB
7 readdcl ABA+B
8 ltnle CA+BC<A+B¬A+BC
9 7 8 sylan2 CABC<A+B¬A+BC
10 9 3impb CABC<A+B¬A+BC
11 10 3coml ABCC<A+B¬A+BC
12 2 6 11 3bitr3rd ABC¬A+BC¬ACB
13 12 con4bid ABCA+BCACB