| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltsubadd | 
							 |-  ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C - B ) < A <-> C < ( A + B ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							3com13 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) < A <-> C < ( A + B ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							resubcl | 
							 |-  ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							ltnle | 
							 |-  ( ( ( C - B ) e. RR /\ A e. RR ) -> ( ( C - B ) < A <-> -. A <_ ( C - B ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							stoic3 | 
							 |-  ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C - B ) < A <-> -. A <_ ( C - B ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3com13 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) < A <-> -. A <_ ( C - B ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							readdcl | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR )  | 
						
						
							| 8 | 
							
								
							 | 
							ltnle | 
							 |-  ( ( C e. RR /\ ( A + B ) e. RR ) -> ( C < ( A + B ) <-> -. ( A + B ) <_ C ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylan2 | 
							 |-  ( ( C e. RR /\ ( A e. RR /\ B e. RR ) ) -> ( C < ( A + B ) <-> -. ( A + B ) <_ C ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3impb | 
							 |-  ( ( C e. RR /\ A e. RR /\ B e. RR ) -> ( C < ( A + B ) <-> -. ( A + B ) <_ C ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							3coml | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C < ( A + B ) <-> -. ( A + B ) <_ C ) )  | 
						
						
							| 12 | 
							
								2 6 11
							 | 
							3bitr3rd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( A + B ) <_ C <-> -. A <_ ( C - B ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							con4bid | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) <_ C <-> A <_ ( C - B ) ) )  |