| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							recn | 
							 |-  ( A e. RR -> A e. CC )  | 
						
						
							| 2 | 
							
								
							 | 
							recn | 
							 |-  ( B e. RR -> B e. CC )  | 
						
						
							| 3 | 
							
								
							 | 
							addcom | 
							 |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3adant3 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) = ( B + A ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							breq1d | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) <_ C <-> ( B + A ) <_ C ) )  | 
						
						
							| 7 | 
							
								
							 | 
							leaddsub | 
							 |-  ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( ( B + A ) <_ C <-> B <_ ( C - A ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3com12 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B + A ) <_ C <-> B <_ ( C - A ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							bitrd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) <_ C <-> B <_ ( C - A ) ) )  |