| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							recn | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							recn | 
							⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							addcom | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							breq1d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  +  𝐵 )  ≤  𝐶  ↔  ( 𝐵  +  𝐴 )  ≤  𝐶 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							leaddsub | 
							⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐵  +  𝐴 )  ≤  𝐶  ↔  𝐵  ≤  ( 𝐶  −  𝐴 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3com12 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐵  +  𝐴 )  ≤  𝐶  ↔  𝐵  ≤  ( 𝐶  −  𝐴 ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							bitrd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  +  𝐵 )  ≤  𝐶  ↔  𝐵  ≤  ( 𝐶  −  𝐴 ) ) )  |