Metamath Proof Explorer


Theorem leaddsub2

Description: 'Less than or equal to' relationship between and addition and subtraction. (Contributed by NM, 6-Apr-2005)

Ref Expression
Assertion leaddsub2 ABCA+BCBCA

Proof

Step Hyp Ref Expression
1 recn AA
2 recn BB
3 addcom ABA+B=B+A
4 1 2 3 syl2an ABA+B=B+A
5 4 3adant3 ABCA+B=B+A
6 5 breq1d ABCA+BCB+AC
7 leaddsub BACB+ACBCA
8 7 3com12 ABCB+ACBCA
9 6 8 bitrd ABCA+BCBCA