Metamath Proof Explorer


Theorem leaddsub2

Description: 'Less than or equal to' relationship between and addition and subtraction. (Contributed by NM, 6-Apr-2005)

Ref Expression
Assertion leaddsub2 A B C A + B C B C A

Proof

Step Hyp Ref Expression
1 recn A A
2 recn B B
3 addcom A B A + B = B + A
4 1 2 3 syl2an A B A + B = B + A
5 4 3adant3 A B C A + B = B + A
6 5 breq1d A B C A + B C B + A C
7 leaddsub B A C B + A C B C A
8 7 3com12 A B C B + A C B C A
9 6 8 bitrd A B C A + B C B C A