Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | recn | |- ( B e. RR -> B e. CC ) |
|
| 3 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + -u B ) = ( A - B ) ) |
| 5 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
| 6 | readdcl | |- ( ( A e. RR /\ -u B e. RR ) -> ( A + -u B ) e. RR ) |
|
| 7 | 5 6 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( A + -u B ) e. RR ) |
| 8 | 4 7 | eqeltrrd | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |