Metamath Proof Explorer


Theorem fzossrbm1

Description: Subset of a half-open range. (Contributed by Alexander van der Vekens, 1-Nov-2017)

Ref Expression
Assertion fzossrbm1 N0..^N10..^N

Proof

Step Hyp Ref Expression
1 peano2zm NN1
2 id NN
3 zre NN
4 3 lem1d NN1N
5 eluz2 NN1N1NN1N
6 1 2 4 5 syl3anbrc NNN1
7 fzoss2 NN10..^N10..^N
8 6 7 syl N0..^N10..^N