Metamath Proof Explorer


Theorem ccatval3

Description: Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015) (Proof shortened by AV, 30-Apr-2020)

Ref Expression
Assertion ccatval3 SWordBTWordBI0..^TS++TI+S=TI

Proof

Step Hyp Ref Expression
1 lencl SWordBS0
2 1 nn0zd SWordBS
3 2 anim1ci SWordBI0..^TI0..^TS
4 3 3adant2 SWordBTWordBI0..^TI0..^TS
5 fzo0addelr I0..^TSI+SS..^S+T
6 4 5 syl SWordBTWordBI0..^TI+SS..^S+T
7 ccatval2 SWordBTWordBI+SS..^S+TS++TI+S=TI+S-S
8 6 7 syld3an3 SWordBTWordBI0..^TS++TI+S=TI+S-S
9 elfzoelz I0..^TI
10 9 3ad2ant3 SWordBTWordBI0..^TI
11 10 zcnd SWordBTWordBI0..^TI
12 1 3ad2ant1 SWordBTWordBI0..^TS0
13 12 nn0cnd SWordBTWordBI0..^TS
14 11 13 pncand SWordBTWordBI0..^TI+S-S=I
15 14 fveq2d SWordBTWordBI0..^TTI+S-S=TI
16 8 15 eqtrd SWordBTWordBI0..^TS++TI+S=TI