Metamath Proof Explorer


Theorem nn0zd

Description: A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis nn0zd.1 φ A 0
Assertion nn0zd φ A

Proof

Step Hyp Ref Expression
1 nn0zd.1 φ A 0
2 nn0ssz 0
3 2 1 sselid φ A