| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn0 |
|
| 2 |
1
|
a1i |
|
| 3 |
|
lencl |
|
| 4 |
3
|
adantr |
|
| 5 |
|
simpr |
|
| 6 |
|
elfz2nn0 |
|
| 7 |
2 4 5 6
|
syl3anbrc |
|
| 8 |
|
pfxlen |
|
| 9 |
|
s2len |
|
| 10 |
9
|
eqcomi |
|
| 11 |
10
|
a1i |
|
| 12 |
|
2nn |
|
| 13 |
|
lbfzo0 |
|
| 14 |
12 13
|
mpbir |
|
| 15 |
|
pfxfv |
|
| 16 |
14 15
|
mp3an3 |
|
| 17 |
16
|
adantr |
|
| 18 |
|
fvex |
|
| 19 |
|
s2fv0 |
|
| 20 |
18 19
|
ax-mp |
|
| 21 |
17 20
|
eqtr4di |
|
| 22 |
|
1nn0 |
|
| 23 |
|
1lt2 |
|
| 24 |
|
elfzo0 |
|
| 25 |
22 12 23 24
|
mpbir3an |
|
| 26 |
|
pfxfv |
|
| 27 |
25 26
|
mp3an3 |
|
| 28 |
|
fvex |
|
| 29 |
|
s2fv1 |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
27 30
|
eqtr4di |
|
| 32 |
31
|
adantr |
|
| 33 |
|
0nn0 |
|
| 34 |
|
fveq2 |
|
| 35 |
|
fveq2 |
|
| 36 |
34 35
|
eqeq12d |
|
| 37 |
|
fveq2 |
|
| 38 |
|
fveq2 |
|
| 39 |
37 38
|
eqeq12d |
|
| 40 |
36 39
|
ralprg |
|
| 41 |
33 22 40
|
mp2an |
|
| 42 |
21 32 41
|
sylanbrc |
|
| 43 |
|
eqeq1 |
|
| 44 |
|
oveq2 |
|
| 45 |
|
fzo0to2pr |
|
| 46 |
44 45
|
eqtrdi |
|
| 47 |
46
|
raleqdv |
|
| 48 |
43 47
|
anbi12d |
|
| 49 |
48
|
adantl |
|
| 50 |
11 42 49
|
mpbir2and |
|
| 51 |
8 50
|
mpdan |
|
| 52 |
|
pfxcl |
|
| 53 |
|
s2cli |
|
| 54 |
|
eqwrd |
|
| 55 |
52 53 54
|
sylancl |
|
| 56 |
55
|
adantr |
|
| 57 |
51 56
|
mpbird |
|
| 58 |
7 57
|
syldan |
|