Metamath Proof Explorer


Theorem ralprg

Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypotheses ralprg.1 x = A φ ψ
ralprg.2 x = B φ χ
Assertion ralprg A V B W x A B φ ψ χ

Proof

Step Hyp Ref Expression
1 ralprg.1 x = A φ ψ
2 ralprg.2 x = B φ χ
3 df-pr A B = A B
4 3 raleqi x A B φ x A B φ
5 ralunb x A B φ x A φ x B φ
6 4 5 bitri x A B φ x A φ x B φ
7 1 ralsng A V x A φ ψ
8 2 ralsng B W x B φ χ
9 7 8 bi2anan9 A V B W x A φ x B φ ψ χ
10 6 9 bitrid A V B W x A B φ ψ χ