Metamath Proof Explorer


Theorem ralsng

Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis ralsng.1 x = A φ ψ
Assertion ralsng A V x A φ ψ

Proof

Step Hyp Ref Expression
1 ralsng.1 x = A φ ψ
2 df-ral x A φ x x A φ
3 velsn x A x = A
4 3 imbi1i x A φ x = A φ
5 4 albii x x A φ x x = A φ
6 2 5 bitri x A φ x x = A φ
7 elisset A V x x = A
8 1 pm5.74i x = A φ x = A ψ
9 8 albii x x = A φ x x = A ψ
10 9 a1i x x = A x x = A φ x x = A ψ
11 19.23v x x = A ψ x x = A ψ
12 11 a1i x x = A x x = A ψ x x = A ψ
13 pm5.5 x x = A x x = A ψ ψ
14 10 12 13 3bitrd x x = A x x = A φ ψ
15 7 14 syl A V x x = A φ ψ
16 6 15 bitrid A V x A φ ψ